- What does the impulse response of a system tells?
- How do you evaluate impulse response?
- What is the difference between impulse response and system response?
- What is the significance of unit impulse or unit sample functions?
What does the impulse response of a system tells?
An impulse is a signal with amplitude of 1 at t = 0 and zero everywhere else. Using an impulse to excite a system provides “infinite” frequency content, i.e. the impulse response tells us how the system will behave for inputs at all frequencies.
How do you evaluate impulse response?
Given the system equation, you can find the impulse response just by feeding x[n] = δ[n] into the system. If the system is linear and time-invariant (terms we'll define later), then you can use the impulse response to find the output for any input, using a method called convolution that we'll learn in two weeks.
What is the difference between impulse response and system response?
Definition: The impulse response of a system is the output of the system when the input is an impulse, δ(t), and all initial conditions are zero. Definition: The step response of a system is the output of the system when the input is a step, H(t), and all initial conditions are zero.
What is the significance of unit impulse or unit sample functions?
One of the more useful functions in the study of linear systems is the "unit impulse function." An ideal impulse function is a function that is zero everywhere but at the origin, where it is infinitely high. However, the area of the impulse is finite.